pSemi GaN FET Driver Delivers Fast Switching to Solid-state LiDAR Systems

The PE29101 High-speed Driver Boasts the Industry’s Fastest Rise Times and a Low Minimum Pulse Width

PHILADELPHIA – INTERNATIONAL MICROWAVE SYMPOSIUM (IMS) – June 12, 2018 – In IMS Booth #1349, pSemiTM Corporation (formerly known as Peregrine Semiconductor), a Murata company focused on semiconductor integration, announces the availability of the PE29101 gallium nitride (GaN) field-effect transistor (FET) driver for solid-state light detection and ranging (LiDAR) systems. The PE29101 boasts the industry’s fastest rise times and a low minimum pulse width. This high-speed driver enables design engineers to extract the full performance and switching speed advantages from GaN transistors. In solid-state LiDAR systems, faster switching translates into improved resolution and accuracy in the LiDAR image.

“As GaN is proving its relevance in applications like solid-state LiDAR, design engineers are using pSemi high-speed drivers to maximize the fast switching benefits of GaN,” says Jim Cable, chief technology officer of pSemi. “Because of its rise and fall speed, the PE29101 enables the highest possible resolution imagery—something the industry needs for LiDAR to reach its fullest potential.”

LiDAR operates on the same principles as radar but instead uses pulsed lasers to precisely map surrounding areas. Traditionally used in high-resolution mapping, LiDAR is now used in advanced-driver assistance programs (ADAS) and is widely seen as an enabling technology to fully autonomous vehicles. Furthermore, solid-state LiDAR has emerged as the future leader in the commercialization of LiDAR systems, largely due to its affordability, reliability and compact size compared to mechanical sensors.

In LiDAR systems, the pulse laser’s switching speed and rise time directly impacts the measurement’s accuracy. To improve resolution, the current must switch as quickly as possible through the laser diode. GaN technology offers LiDAR systems superior resolution and a faster response time because of its very low input capacitance and its ability to switch significantly faster than metal-oxide semiconductor field-effect transistors (MOSFETs).

GaN FETs must be controlled by a very fast driver to maximize their fast-switching potential. Increasing the switching speed requires a driver with fast rise times and a low minimum output pulse width. The PE29101 offers these key performance specifications, enabling GaN technology to improve LiDAR resolution.

PE29101 GaN FET Driver for LiDAR Applications

Features, Packaging, Price and Availability 

The PE29101 is a half-bridge FET driver that controls the gates of GaN transistors. The driver outputs are capable of providing switching transition speeds in the sub-nanosecond range for switching applications up to 40 MHz. The PE29101 has a rise/ fall time of 1 ns with 100 pF load and a minimum output pulse width of 2 ns. It operates from 4V to 6.5V and can support a high side floating supply voltage of 80V. The PE29101 has an output source current of 2A and an output sink current of 4A.

Offered as a flip-chip die, PE29101 volume-production parts, samples and evaluation kits are available now. For 1K quantity orders, each PE29101 is $2.79 USD. Contact sales@psemi.com for more information.

About pSemi

pSemi Corporation is a Murata company driving semiconductor integration. pSemi builds on Peregrine Semiconductor’s 30-year legacy of technology advancements and strong IP portfolio but with a new mission: to enhance Murata’s world-class capabilities with high-performance RF, analog, mixed-signal and optical solutions. With a strong foundation in RF integration, pSemi’s product portfolio now spans power management, connected sensors, optical transceivers, antenna tuning and RF frontends. These intelligent and efficient semiconductors enable advanced modules for smartphones, base stations, personal computers, electric vehicles, data centers, IoT devices and healthcare. From headquarters in San Diego and offices around the world, pSemi’s team explores new ways to make electronics for the connected world smaller, thinner, faster and better. To view pSemi’s semiconductor advancements or to join the pSemi team, visit www.psemi.com.

###

The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries. All other trademarks are the property of their respective companies. The pSemi website is copyrighted by pSemi Corporation. All rights reserved.

Markets

Power Management

Markets

  • High Linearity RF Switches

    Industry-leading linearity and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • High Isolation RF Switches

    Industry-leading isolation and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Low Insertion Loss RF Switches

    Industry-leading insertion loss and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Antenna Tuning Switches

    Industry-leading RF power handling and ruggedness
    Best-in-class harmonic and linearity
    Small form factor with robust ESD and reliability
  • 75Ω Wired Broadband Switches

    Unmatched linearity performance for DOCSIS 3.1
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD ratings and reliability
  • Broadband RF Switches

    Wideband support with a frequency range from 0 Hz to 67 GHz
    Industry-leading insertion loss, isolation, linearity and settling time
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Best-in-class ESD and reliability
  • High Power Switches

    Industry-leading power handling and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Automotive Switches

    AEC-Q100 Grade 2-certified supporting temperatures up to +105°C
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Extended Temperature RF Switches

    Wide temperature range support from -55°C to +125°C
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • 75Ω Wired Broadband RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • Glitchless RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • General-purpose RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • 2.4 GHz IoT FEMs

    Industry-leading monolithic Wi-Fi RF front-end solutions
    High linearity performance for Wi-Fi 6 and W-Fi 6E
    Compact form factors integrating high-performance RF, analog and digital
    Best-in-class ESD and reliability
  • Phase Shifters

    Ideal solutions for optimizing transmission phase angle
    Low root-mean-square (RMS) phase and amplitude error with fine phase resolution
    Digital control interface with parallel and serial programming options
    Best-in-class ESD and reliability
  • Monolithic Phase & Amplitude Controllers (MPACs)

    Reliable phase and amplitude control for next-generation communications
    Monolithic CMOS solution that integrates RF, analog and digital
    Integrated solution for Doherty power amplifier optimization (MPAC–Doherty)
  • Digital Tunable Capacitors (DTCs)

    Small form factor with high Q
    Monolithically integrated impedance tuning solution
    Wide-band tuning coverage, minimum mismatch losses, high linearity and fast switching speed
    Best-in-class ESD and reliability
  • Power Limiters

    Highly integrated solutions, smaller and more reliable than PIN-diode solutions
    Adjustable threshold control for maximum design flexibility
    High power handling and linearity required for wide-dynamic-range designs
    Fast response and recovery times for instantaneous protection and rapid return
  • Prescalers

    Exceptional performance with high-frequency support up to 13.5 GHz
    Low phase noise performance and low power consumption solutions
    Bare-die solutions for a wide variety of compact high-performance applications
    Best-in-class ESD and reliability
  • Mixers

    Broadband quad MOSFET array cores for high performance
    Industry-leading linearity, isolation and low conversion loss
    Available in MSOP, DFN and QFN packages
    Best-in-class ESD and reliability
  • Switch LNA

    Integrates dual-channel LNA with bypass function & high-power switch
    20W average RF input power
    Low noise figure of 0.9 dB
    +105°C operating temperature

Power Management

RF Mixers & Limiters

Front End Modules

RF Phase & Amplitude Control

Skip to content