Peregrine Semiconductor’s UltraCMOS® RFICs Flying in Globalstar Communication Satellites

San Diego, California, Mar. 25, 2013 Peregrine Semiconductor Corporation (NASDAQ: PSMI), a fabless provider of high-performance radio frequency integrated circuits (RFICs), today announced that its UltraCMOS®Phase Locked Loop (PLL) frequency synthesizer and prescaler devices are designed into six Globalstar mobile communication satellites that were launched into orbit on February 6. Built by Thales Alenia Space in France, the low-Earth orbit satellites transmit audio and data communications for Globalstar’s mobile voice and data customers worldwide. Peregrine’s PLL and prescaler enable communication in sixteen C- and S-band transponders in the system, which connects end users with terrestrial communication networks via vehicle-mounted mobile devices, as well as fixed terminals, such as those used for rural telephony. The Peregrine devices feature extremely low phase noise and Single Event Effect (SEE) immunity—attributes enabled by the insulating properties of UltraCMOS process technology—as well as low power, small form factor, and light weight.

“Our products have nearly 20 years of commercial space flight heritage in some of the  most high-profile missions, and we’ve considered Thales Alenia Space an important partner in our endeavor to provide market-leading RF performance in the most demanding radiation-rich environments,” said Dave Shepard, vice president of Peregrine Semiconductor’s High-Performance Solutions business unit.  “We’re delighted that Peregrine’s PLL and prescaler were selected for the Globalstar satellites and that UltraCMOS, with its inherent radiation-induced latchup immunity, continues to be the technology of choice for this, or any, space application.”

Single Event Effects are errors that are caused by naturally-occurring space-based radiation. There are two primary types of SEEs. Single Event Upsets (SEUs) are non-destructive and can be corrected. Single Event Latchups (SELs), on the other hand, are often catastrophic, resulting in permanent damage and requiring, at a minimum, a power-down to recover. SELs can occur when a high- energy particle strikes a semiconductor device, causing a short circuit from power to ground within the device. RFICs manufactured using UltraCMOS technology do not contain the bulk parasitics found in regular CMOS devices, making latchup impossible.

Peregrine’s UltraCMOS technology is an advanced RF Silicon-On-Insulator process that utilizes a synthetic sapphire substrate—a near-perfect electrical insulator. This substrate enables low parasitic capacitance, high signal isolation, excellent broadband linearity, and inherent SEL immunity. These attributes make UltraCMOS well suited for high-reliability applications, such as commercial satellites. For more information about Peregrine Semiconductor’s high-reliability products, visit https://psemi.com.

About Peregrine Semiconductor

Peregrine Semiconductor (NASDAQ: PSMI) is a fabless provider of high-performance radio frequency integrated circuits (RFICs). Our solutions leverage our proprietary UltraCMOS® technology, an advanced RF Silicon-On-Insulator process. Our products deliver what we believe is an industry-leading combination of performance and monolithic integration, and target a broad range of applications in the aerospace and defense, broadband, industrial, mobile wireless device, test and measurement equipment, and wireless infrastructure markets. Additional information is available at https://psemi.com.

###

The Peregrine Semiconductor name, logo, and UltraCMOS are registered trademarks of Peregrine Semiconductor Corporation in the U.S.A., and other countries. All other trademarks mentioned herein are the property of their respective owners.

Markets

Power Management

  • High Linearity RF Switches

    Industry-leading linearity and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • High Isolation RF Switches

    Industry-leading isolation and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Low Insertion Loss RF Switches

    Industry-leading insertion loss and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Antenna Tuning Switches

    Industry-leading RF power handling and ruggedness
    Best-in-class harmonic and linearity
    Small form factor with robust ESD and reliability
  • 75Ω Wired Broadband Switches

    Unmatched linearity performance for DOCSIS 3.1
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD ratings and reliability
  • Broadband RF Switches

    Wideband support with a frequency range from 0 Hz to 67 GHz
    Industry-leading insertion loss, isolation, linearity and settling time
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Best-in-class ESD and reliability
  • High Power Switches

    Industry-leading power handling and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Automotive Switches

    AEC-Q100 Grade 2-certified supporting temperatures up to +105°C
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Extended Temperature RF Switches

    Wide temperature range support from -55°C to +125°C
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • 75Ω Wired Broadband RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • Glitchless RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • General-purpose RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • 2.4 GHz IoT FEMs

    Industry-leading monolithic Wi-Fi RF front-end solutions
    High linearity performance for Wi-Fi 6 and W-Fi 6E
    Compact form factors integrating high-performance RF, analog and digital
    Best-in-class ESD and reliability
  • Phase Shifters

    Ideal solutions for optimizing transmission phase angle
    Low root-mean-square (RMS) phase and amplitude error with fine phase resolution
    Digital control interface with parallel and serial programming options
    Best-in-class ESD and reliability
  • Monolithic Phase & Amplitude Controllers (MPACs)

    Reliable phase and amplitude control for next-generation communications
    Monolithic CMOS solution that integrates RF, analog and digital
    Integrated solution for Doherty power amplifier optimization (MPAC–Doherty)
  • Digital Tunable Capacitors (DTCs)

    Small form factor with high Q
    Monolithically integrated impedance tuning solution
    Wide-band tuning coverage, minimum mismatch losses, high linearity and fast switching speed
    Best-in-class ESD and reliability
  • Power Limiters

    Highly integrated solutions, smaller and more reliable than PIN-diode solutions
    Adjustable threshold control for maximum design flexibility
    High power handling and linearity required for wide-dynamic-range designs
    Fast response and recovery times for instantaneous protection and rapid return
  • Prescalers

    Exceptional performance with high-frequency support up to 13.5 GHz
    Low phase noise performance and low power consumption solutions
    Bare-die solutions for a wide variety of compact high-performance applications
    Best-in-class ESD and reliability
  • Mixers

    Broadband quad MOSFET array cores for high performance
    Industry-leading linearity, isolation and low conversion loss
    Available in MSOP, DFN and QFN packages
    Best-in-class ESD and reliability
  • Switch LNA

    Integrates dual-channel LNA with bypass function & high-power switch
    20W average RF input power
    Low noise figure of 0.9 dB
    +105°C operating temperature

Power Management

RF Mixers & Limiters

Front End Modules

RF Phase & Amplitude Control

Skip to content