Peregrine Enables New Approach to RF Switching in High-Power Wireless Systems

UltraCMOS® technology delivers unprecedented combination of 30W power handling and excellent linearity across the UHF/VHF through LTE frequency bands

San Diego, California, September 11, 2013 Peregrine Semiconductor Corporation (NASDAQ: PSMI), a fabless provider of high-performance radio frequency integrated circuits (RFICs), today announced the PE42820 and PE42821 single-pole double throw (SPDT) switches for high-power wireless applications. The new switches provide an unprecedented combination of high-power handling and excellent linearity while offering an integrated approach that reduces board area, power consumption and design-in complexity compared to traditional discrete solutions. This combination makes the PE42820/821 ideal for transmit/receive, filter bank and antenna band switching applications in high-power RF systems such as wireless infrastructure devices and land mobile radios for public safety and military environments.

Peregrine’s new switching ICs are significant in replacing discrete solutions including traditional pin diodes used in land mobile radios (LMR), and mechanical relays used in LTE-enabled small cells or distributed antenna systems. These discrete solutions cannot deliver both the high power handling and high linearity required for broadband frequency support as required for LMR and LTE convergence. In contrast, the PE42820/821 switching ICs offer high 30W power handling while also enabling excellent linearity across the entire 30MHz to 2.7GHz frequency range. This combination, enabled by Peregrine’s UltraCMOS® technology with HaRP™ enhancements, improves signal clarity and range in high-power RF systems.

In addition, Peregrine’s monolithic approach integrates flexible control voltage ranges, which eliminates the need for external bias control circuitry. This reduces the system bill of materials, thereby saving on board space and current consumption, while simplifying design for a more reliable long-term solution.

“The increased complexity that comes from supporting additional frequency bands in high-power wireless applications necessitates a new approach to system design,” said Mark Schrepferman, director of Peregrine’s communications and industrial product line. “Discrete solutions utilizing pin diodes and mechanical relays simply cannot support the required linearity from UHF/VHF through LTE operation while still meeting the size, cost and performance expectations of high-power wireless systems. Our monolithic approach offers a reliable solution to these challenges and provide customers with a route to future proofing their designs as they move to accommodate additional frequency bands.”

In addition to high linearity (82dBm IIP3 @ 850MHz; 76dBm IIP3 @ 2.7GHz), the PE42820 and PE42821 switching ICs feature low insertion loss (0.35 from 30MHz-1GHz; 0.20 from 1-2GHz; and 0.80 from 2-2.7GHz), and exceptional ESD of 1.5 kV HBM on all pins. The PE42820/1 high-power switches operate with a wide supply range of 2.3V to 5.5V. The PE42821 is a feature and pin-compatible version of the PE42820 with a faster switching time of 6µs.

Development Tool Support

Peregrine Semiconductor also announced availability of the PE42820/1 Evaluation Kits, available now through Peregrine’s global direct sales representatives and worldwide distribution partners.

Packaging, Pricing & Availability

The PE42820/821 switches are supplied in RoHS compliant, 5 x 5 mm 32-lead QFN packages. Pricing for both devices starts at $11.69 in 10k unit quantifies. Samples and volume-production quantities are available today by contacting Peregrine. For more information, visit https://psemi.com.

About Peregrine Semiconductor

Peregrine Semiconductor (NASDAQ: PSMI) is a fabless provider of high-performance radio frequency integrated circuits (RFICs). Our solutions leverage our proprietary UltraCMOS® technology, an advanced RF Silicon-On-Insulator process. Our products deliver what we believe is an industry-leading combination of performance and monolithic integration, and target a broad range of applications in the aerospace and defense, broadband, industrial, mobile wireless device, test and measurement equipment, and wireless infrastructure markets. Additional information is available at https://psemi.com.

####

The Peregrine Semiconductor name, logo, and UltraCMOS are registered trademarks of Peregrine Semiconductor Corporation in the U.S.A., and other countries. HaRP is a trademark of Peregrine Semiconductor Corporation in the U.S.A., and other countries.

All other trademarks mentioned herein are the property of their respective owners.

Markets

Power Management

Markets

  • High Linearity RF Switches

    Industry-leading linearity and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • High Isolation RF Switches

    Industry-leading isolation and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Low Insertion Loss RF Switches

    Industry-leading insertion loss and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Antenna Tuning Switches

    Industry-leading RF power handling and ruggedness
    Best-in-class harmonic and linearity
    Small form factor with robust ESD and reliability
  • 75Ω Wired Broadband Switches

    Unmatched linearity performance for DOCSIS 3.1
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD ratings and reliability
  • Broadband RF Switches

    Wideband support with a frequency range from 0 Hz to 67 GHz
    Industry-leading insertion loss, isolation, linearity and settling time
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Best-in-class ESD and reliability
  • High Power Switches

    Industry-leading power handling and RF performance
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Automotive Switches

    AEC-Q100 Grade 2-certified supporting temperatures up to +105°C
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • Extended Temperature RF Switches

    Wide temperature range support from -55°C to +125°C
    HaRP™ technology enhancement reduces gate lag and insertion loss drift
    Monolithic CMOS solution that integrates RF, analog and digital
    Best-in-class ESD and reliability
  • 75Ω Wired Broadband RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • Glitchless RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • General-purpose RF Digital Step Attenuators

    High linearity, fast switching time with wide bandwidth
    Best-in-class attenuation error with fine attenuation steps
    Monolithic CMOS solution that integrates RF, analog and digital
    Excellent ESD protection and reliability
  • 2.4 GHz IoT FEMs

    Industry-leading monolithic Wi-Fi RF front-end solutions
    High linearity performance for Wi-Fi 6 and W-Fi 6E
    Compact form factors integrating high-performance RF, analog and digital
    Best-in-class ESD and reliability
  • Phase Shifters

    Ideal solutions for optimizing transmission phase angle
    Low root-mean-square (RMS) phase and amplitude error with fine phase resolution
    Digital control interface with parallel and serial programming options
    Best-in-class ESD and reliability
  • Monolithic Phase & Amplitude Controllers (MPACs)

    Reliable phase and amplitude control for next-generation communications
    Monolithic CMOS solution that integrates RF, analog and digital
    Integrated solution for Doherty power amplifier optimization (MPAC–Doherty)
  • Digital Tunable Capacitors (DTCs)

    Small form factor with high Q
    Monolithically integrated impedance tuning solution
    Wide-band tuning coverage, minimum mismatch losses, high linearity and fast switching speed
    Best-in-class ESD and reliability
  • Power Limiters

    Highly integrated solutions, smaller and more reliable than PIN-diode solutions
    Adjustable threshold control for maximum design flexibility
    High power handling and linearity required for wide-dynamic-range designs
    Fast response and recovery times for instantaneous protection and rapid return
  • Prescalers

    Exceptional performance with high-frequency support up to 13.5 GHz
    Low phase noise performance and low power consumption solutions
    Bare-die solutions for a wide variety of compact high-performance applications
    Best-in-class ESD and reliability
  • Mixers

    Broadband quad MOSFET array cores for high performance
    Industry-leading linearity, isolation and low conversion loss
    Available in MSOP, DFN and QFN packages
    Best-in-class ESD and reliability
  • Switch LNA

    Integrates dual-channel LNA with bypass function & high-power switch
    20W average RF input power
    Low noise figure of 0.9 dB
    +105°C operating temperature

Power Management

RF Mixers & Limiters

Front End Modules

RF Phase & Amplitude Control

Skip to content